Critical Points and Supersymmetric Vacua

نویسندگان

  • MICHAEL R. DOUGLAS
  • BERNARD SHIFFMAN
چکیده

Supersymmetric vacua (‘universes’) of string/M theory may be identified with certain critical points of a holomorphic section (the ‘superpotential’) of a Hermitian holomorphic line bundle over a complex manifold. An important physical problem is to determine how many vacua there are and how they are distributed. The present paper initiates the study of the statistics of critical points ∇s = 0 of Gaussian random holomorphic sections with respect to a connection ∇. Even the expected number of critical points depends on the curvature of ∇. The principal results give formulas for the expected density and number of critical points of Gaussian random sections relative to ∇ in a variety of settings. The results are particularly concrete for Riemann surfaces. Analogous results on the density of critical points of fixed Morse index are given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 0 Fe b 20 04 CRITICAL POINTS AND SUPERSYMMETRIC VACUA

Supersymmetric vacua ('universes') of string/M theory may be identified with certain critical points of a holomorphic section (the 'superpotential') of a Hermitian holomor-phic line bundle over a complex manifold. An important physical problem is to determine how many vacua there are and how they are distributed. The present paper initiates the study of the statistics of critical points ∇s = 0 ...

متن کامل

un 2 00 4 CRITICAL POINTS AND SUPERSYMMETRIC VACUA

Supersymmetric vacua ('universes') of string/M theory may be identified with certain critical points of a holomorphic section (the 'superpotential') of a Hermitian holomor-phic line bundle over a complex manifold. An important physical problem is to determine how many vacua there are and how they are distributed. The present paper initiates the study of the statistics of critical points ∇s = 0 ...

متن کامل

ar X iv : m at h - ph / 0 50 60 15 v 2 9 J un 2 00 5 CRITICAL POINTS AND SUPERSYMMETRIC VACUA , III : STRING / M MODELS

A fundamental problem in contemporary string/M theory is to count the number of inequivalent vacua satisfying constraints in a string theory model. This article contains the first rigorous results on the number and distribution of supersymmetric vacua of type IIb string theories compactified on a Calabi-Yau 3-fold X with flux. In particular, complete proofs of the counting formulas in Ashok-Dou...

متن کامل

ar X iv : m at h - ph / 0 50 60 15 v 1 7 J un 2 00 5 CRITICAL POINTS AND SUPERSYMMETRIC VACUA , III : STRING / M MODELS

A fundamental problem in contemporary string/M theory is to count the number of inequivalent vacua satisfying constraints in a string theory model. This article contains the first rigorous results on the number and distribution of supersymmetric vacua of type IIb string theories compactified on a Calabi-Yau 3-fold X with flux. In particular, complete proofs of the counting formulas in Ashok-Dou...

متن کامل

Critical Points and Supersymmetric Vacua, Iii: String/m Models

A fundamental problem in contemporary string/M theory is to count the number of inequivalent vacua satisfying constraints in a string theory model. This article contains the first rigorous results on the number and distribution of supersymmetric vacua of type IIb string theories compactified on a Calabi-Yau 3-fold X with flux. In particular, complete proofs of the counting formulas in Ashok-Dou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004